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Abstract: In this paper, a simple graph G with the order at least 3 satisfying Chvatal-condition is 

A-connected if and only if G is not the 4-cycle was showed, in which A is an abelian group of order 

at least 4. 

 

1. Introduction 

Graphs in this paper are finite and may have multiple edges. A graph is simple if it has no multiple 

edges and loops. Let G be a graph with an orientation D. We use )(GV  to denote the set of 

vertexes of G  and )(GE  to denote the set of edges ofG . For a vertex )(GVv∈ , we use )(vE +  

(or )(vE − , respectively) to denote the set of edges with tails (or heads, respectively) at v . For 

subgraphs 1V  and 2V  ofG , ),( 21 VVe  denotes the number of edges with one end in 1V  and the 

other end in 2V . 

Let A  be an (additive) abelian group with identity 0 and }0{* −= AA , let ),( AGF  denote the set 

of all functions from )(GE  to A , and ),(* AGF  denote the set of all functions from )(GE  to 
*A . Given a function ),( AGFf ∈ , let AGVf →∂ )(:  be given 

by ∑∑ −+ ∈∈
−=∂

)()(
)()()(

vEevEe
efefvf , where ``∑ " refers to the addition in A . 

Let kZ  be an (additive) abelian group of k  elements with identity 0. ),( kZGFf ∈  is called a 

kZ -flow in G  if  0)( =∂ vf  for each )(GVv∈ . For an edge )(GEe∈ , we call )(ef  the flow 

value of e . The support of f is defined by }0)()({)( ≠∈= efGEefS . f  is called a 

nowhere-zero kZ -flow if )()( GEfS = . For an integer 2≥k , a nowhere-zero k -flow of G  is an 

integer-valued function f on )(GE  such that kef << )(0  for each )(GEe∈ , and 0)( =∂ vf  

for each )(GVv∈ . It is well known that G  has a nowhere-zero kZ -flow if and only if it has a 

nowhere-zero k -flow. Therefore, a kZ -flow is also called a k -flow.  

The concept of group connectivity was introduced by Jaeger et al. [2] as a generalization of 

nowhere-zero flows. For a graph G , a function AGVb →)(:  is called an A -valued zero-sum 

2018 2nd International Conference on Systems, Computing, and Applications (SYSTCA 2018)

Copyright © (2018) Francis Academic Press, UK DOI: 10.25236/systca.18.044--199--



 

function on G  if 0)(
)(

=∑ ∈ GVv
vb .The set of all A -valued zero-sum functions on G  is denoted 

by ),( AGZ . Given ),( AGZb∈  and an orientation D  of G , a function ),(* AGFf ∈  is an 

),( bA -nowhere-zero flow if bf =∂ .A graph G  is A -connected if G  has an orientation D  

such that for any ),( AGZb∈ , G  has an ),( bA -nowhere-zero flow. As noted in [2], G  is 

A -connected or not is independent of the choice of the orientation D . 

In [3], Jaeger et al. made the following conjecture on 3Z -connectivity, which implies Tutte's 

well-known 3-flow conjecture. 

Conjecture 1.1[3] Every 5-edge connected graph is 3Z -connected. 

If G  is a simple graph on n  vertices, the degree sequence of G  is denoted 

by ),,()( 21 ndddG =π , where nddd ≤≤≤ 21 . If G  satisfies talaChv ′ -condition that 

1+≥ mdm  or mnd mn −≥−  for
2

1 nm <≤ , we have the following known results. 

(1) If G  satisfies saop
/

-condition, then G  satisfies talaChv ′ -condition, but the opposite is not 

always true.  

(2) If G  satisfies talaChv ′ -condition, then G  is Hamiltonian, and G  has a nowhere-zero 

4-flow, but G  is not always 4Z - connected. 

Let A  be an abelian group of order at least 4 . In [5], Yue Zhang et al. characterized a simple graph 

G  satisfying saop
/

-condition with 3)( ≥GV  is A -connected if and only if 4CG ≠ . In this 

paper, we will further characterize a simple graph G  satisfying talaChv ′ -condition with 

3)( ≥GV  is A -connected if and only if 4CG ≠ (Theorem 1). 

2. Preliminaries 

Let G  be a graph. For a subset )(GEX ⊆ , the contraction XG /  is the graph obtained from G  

by identifying the two ends of each edge e  in X  and deleting e . For convenience, we write 

eG /  for }/{eG , where )(GEe∈ . If H  is a subgraph ofG , then we write HG /  for )(/ HEG . 

In order to prove Theorem 1, we need the following known results and useful lemmas. 

Lemma 2.1[4] let A  be an abelian group, then we have the following results: 

(1) If H  is a subgraph of G  and if both H  and HG /  are A -connected, then G  is 

A -connected. 

(2) nC  is A -connected if and only if 1+≥ nA , where nC  denotes the n -cycle. 

(3) 1K  is A -connected. 

Lemma 2.2[1] Let A  be an abelian group, if 4≥A  and 3≥≥ mn , then nmK ,  is A -connected, 
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where nmK ,  denotes the complete bipartite graph. 

In the following we always assume that G  is a 2-edge-connected graph, 

},,{)( 21 nvvvGV =  and iiG dvd =)( ),2,1( ni = ，where nddd ≤≤≤ 21 . 

Lemma 2.3 Let 4≥= nG , G  satisfies talaChv ′ -condition and 4CG ≠ .Then G  contains a 

triangle with a vertex having degree at least 




2
n  or G  is a bipartite graph of order 

22
nn

×  which 

has a subgraph 
2

,3 nK )6( ≥n . 

Proof. We consider the following two cases. 

Case 1  n  is odd. 

By talaChv ′ -condition, we have 
2

1

2
1

+
≥−

nd n  or 
2

1

2
1

+
≥+

nd n , then there exists an edge 

)(
2

1 GEvv in ∈+  with 
2

1+
>

ni  and 
2

1+
≥

ndi . Since 
2

1+nv  and iv  having at least one same 

adjacent vertex, then G  contains a triangle with a vertex having degree at least 




2
n . 

Case 2  n  is even. 

By talaChv ′ -condition, we have 
21

2

nd n ≥
−

 or 1
21

2

+≥
+

nd n . If 
21

2

nd n ≥
−

, then there exists an 

edge )(
1

2

GEvv in ∈
−

 with 1
2
−>

ni  and 
2
ndi ≥ . If )(

1
2
−

nG vN  or )( iG vN  is not an independent 

set, then G  contains a triangle with a vertex having degree at least 




2
n . If φ≠

−
)()(

1
2

iGnG vNvN  , 

then G  also contains a triangle with a vertex having degree at least 




2
n . Thus, we only need to 

consider the case when )(
1

2
−

nG vN  and )( iG vN  are independent set, and φ=
−

)()(
1

2
iGnG vNvN  . 

In this case, we have 
2

)()(
1

2

nvNvN iGnG ==
−

 and )()()(
1

2

GVvNvN iGnG =
−
G . Then G  is a 

bipartite graph which has the bipartition ))(),((
1

2
iGnG vNvN

−
.It is easy to see that there are at least 

2
2
+

n  vertices having degree at least
2
n . If 4=n , then 4CG = , a contradiction. If 6≥n , then 

there are at least 3 vertices having degree at least 
2
n  in )(

1
2
−

nG vN  or )( iG vN  . Thus, G  is a 
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bipartite graph of order 
22
nn

×  which has a subgraph
2

,3 nK )6( ≥n . If 1
21

2

+≥
+

nd n , then there 

exists an edge )(
1

2

GEvv in ∈
+

 where 1
2
+>

ni , 1
2
+≥

ndi  , 
2

1+nv  and iv  having at least one 

same adjacent vertex. Therefore, G  contains a triangle with a vertex having degree at least 




2
n . 

3. Conclusions 

Theorem 1 Let 3≥= nG . If G  satisfies talaChv ′ -condition, then G  is A -connected if and 

only if 4CG ≠ , where A  is an abelian group of order at least 4  and 4C  is a cycle of length 4 . 

Proof. If G  is A -connected, then by Lemma 2.1(2), we have 4CG ≠ . Conversely, if 4CG ≠ , then 

we will prove that G  is A -connected. 

If 3=n , it is easy to see that G  is a triangle. By Lemma 2.1(2), G  is A -connected. If 4≥n , 

we consider the following two cases. 

Case 1 G  contains a triangle. 

By Lemma 2.3, G  contains a triangle with a vertex 'v  having degree at least 




2
n . In G , 

contract this triangle to a vertex *u , we get a new graph 1G . In 1G , contract all 2-cycles, loops and 

the triangles which contain the vertex *u , we get a new graph 2G . For convenience, we still let *u  

to denote the new vertex which contracted into. Recursively contract all 2-cycles, loops and the 

triangles which contain the vertex *u , eventually, we get the simple graph tG . Clearly, there is a 

connected subgraph  H  of G  such that HGGt /= . Let *' uGH t −= , 1)( nHV =  

and 2)'( nHV = . Clearly, 31 ≥n  and 02 ≥n . If 02 >n , since tG  is a simple graph, we have that 

1),( ≤Hve  for any )'(HVv∈ . Let ruuu ,, 21  be all vertices for which 1),( =Hue i , then 

},,{ 21 ruuu   is a independent set. 

First we consider the case when n  is even. If 21 nn > , then
22
nn < . By talaChv ′ -condition, we 

have 122
+≥ ndn  or 22

nnd nn −≥− , then 122
+≥ ndn  or 11

ndn ≥ . Since 2)( nvdG ≤  for 

any )'(HVv∈ , then 22
ndn ≤ , a contradiction to 122

+≥ ndn . Therefore, 11
ndn ≥ , then there are at 

least 12 +n  vertices having degree at least 1n  in G , then it is easy to see that there are at least 

12 +n  vertices having degree at least 1n  in H . Therefore, 12 +≥ nr , a contradiction. If 21 nn ≤ , 

since )(' HVv∈  and
2

)'( nvdG ≥ , then 11
2 1 ≥+−≥ nnr  
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and
2

1)1
2

(1)( 122
nnnnrnud iG =++−−≤+−≤ ),2,1( ri = . By talaChv ′ -condition, we have 

21
2

nd n ≥
−

 or 1
21

2

+≥
+

nd n . If 
21

2

nd n ≥
−

 and 
2

)( nud iG <  for any iu , then there are at least 

3)1
2

(2
2

)(2
2 122 =+−+−+≥−−+ nnnnrnn vertices having degree at least 

2
n  in H , we have 

)1
2

(3 1 +−≥ nnr . Similarly, there are at least 

552)1
2

(32
2

)(2
2 1122 ≥+−=+−+−+≥−−+ nnnnnnrnn  vertices having degree at least 

2
n  in 

H ,  we have )1
2

(5 1 +−≥ nnr . Recursively we have 2nr > , a contradiction. If 
21

2

nd n ≥
−

 and 

2
)( nud iG =  for one iu , then there must be have 1

2 1 +−= nnr , 
2

)'( nvdG =  and 'v  is the only 

vertex which satisfies 0)','( >Hve  in H , a contradiction to G  is Hamiltonian.  If 

1
21

2

+≥
+

nd n , then there are at least 1)1
2

(
2

)(
2 122 =+−+−≥−− nnnnrnn vertex having degree at 

least 1
2
+

n  in H , we have 11
2 1 +−+≥ nnr . Similarly, there are at least 

2)11
2

(
2

)(
2 122 =+−++−≥−− nnnnrnn  vertices having degree at least 1

2
+

n  in H , we have 

)11
2

(2 1 +−+≥ nnr . Recursively we have 2nr > , a contradiction. 

Now we consider the case when n  is odd. If 
2

1
1

+
≤

nn , since )(' HVv∈  and 
2

1)'( +
≥

nvdG , 

then 11
2

1
1 ≥+−

+
≥ nnr  and 

2
11)1

2
1(1)( 122

−
=++−

+
−≤+−≤

nnnnrnud iG ),2,1( ri = . 

By talaChv ′ -condition, we have 
2

1

2
1

+
≥−

nd n  or 
2

1

2
1

+
≥+

nd n , then there are at least 
2

1+n  

vertices having degree at least 
2

1+n  in G , then it is easy to see that there are at least 

2)1
2

1(
2

1)(
2

1
122 =+−

+
+−

+
≥−−

+ nnnnrnn  vertices having degree at least 
2

1+n  in H . 

Therefore, )1
2

1(2 1 +−
+

≥ nnr . Similarly, there are at least 

3)1
2

1(2
2

1)(
2

1
122 ≥+−

+
+−

+
≥−−

+ nnnnrnn  vertices having degree at least 
2

1+n  in H . 
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Therefore, )1
2

1(3 1 +−
+

≥ nnr . Recursively we have 2nr > , a contradiction. If 
2

1
1

+
>

nn , then 

2
1

2
−

<
nn . By talaChv ′ -condition, we have 122

+≥ ndn  or 22
nnd nn −≥− , then 122

+≥ ndn  or 

11
ndn ≥ . Since 2)( nvdG ≤  for any )'(HVv∈ , then 22

ndn ≤ , a contradiction to 122
+≥ ndn . 

Therefore, 11
ndn ≥ , then there are at least 12 +n  vertices having degree at least 1n  in G , then it 

is easy to see that there are at least 12 +n  vertices having degree at least 1n  in H . Therefore, 

12 +≥ nr , a contradiction. 

In summary, we always have 02 =n  for n  is even or odd, then GH = , 1/ KHGGt == . By 

Lemma 2.1(1) and Lemma 2.1(3), G  is A -connected. 

Case 2 G  does not contain triangles. 

By Lemma 2.3, G  is a bipartite graph of order 
22
nn

×  which has a subgraph 
2

,3 nK )6( ≥n . 

Contract the 
2

,3 nK  and recursively contract all resulting 2-cycles and loops, eventually, we get 1K . 

By Lemma 2.1(3), G  is A -connected. 

References 

[1] J.J. Chen, E. Eschen and H.J. Lai, Group connectivity of certain graphs, Ars Combin.,89 (2008) 

141--158. 

[2] F. Jaeger, Nowhere-zero flow problems, In: Topics in graph theory, 3 (L.W. Beineke and R.J. 

Wilson, editors), Academic Press, London, 1988, 70--95. 

[3] F. Jaeger, N. Linial, C. Payan and M.Tarsi, Group connectivity of graphs--A nonhomogeneous 

analogue of nowhere zero flow properties, J. Combin. Theory Ser.B,56 (1992) 165--182. 

[4] H.J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin.,16(2000) 

165--176. 

--204--




